"తెలుగులో సులువుగా టైపు చేసేందుకు, మీ క్రోమ్ బ్రౌజరు లో గూగుల్ లిప్యంతరీకరణ పద్ధతిని వాడవచ్చు."
అవకలన సమీకరణాలు
ఒక గణిత సమీకరణంలో వ్యుత్ప్పన్న రాశులు (derivatives) ఉంటే ఆ సమీకరణాన్ని అవకలన సమీకరణం (differential equation) అంటారు. ఒక కారు ఎంత జోరు (speed) గా ప్రయాణం చేస్తున్నాదో చెప్పడానికి వేగం (velocity) అనే పదం వాడతాము. ఈ వేగం ఎంత జోరుగా మారుతోందో చెప్పడానికి త్వరణం (acceleration) అనే మాట వాడతాము. ఇక్కడ వేగం, త్వరణం అనేవి వ్యుత్ప్పన్న రాశులకి ఉదాహరణలు. ఒక గణిత సమీకరణంలో వేగం, త్వరణం వంటి అంశాలు చేర్చినప్పుడు ఆ సమీకరణాన్ని అవకలన సమీకరణం అంటారు.
ఒక సమీకరణంలోని వ్యుత్ప్పన్న రాశులు ఒకేఒక స్వతంత్ర చలరాశిపై ఆధారపడి ఉంటే ఆ సమీకరణాన్ని సామాన్య అవకలన సమీకరణం (ordinary differential equation) అంటారు. ఒక సమీకరణంలోని వ్యుత్ప్పన్న రాశులు (లేదా, అవకలనాలు) రెండు (లేదా) అంతకంటే ఎక్కువ స్వతంత్ర చలరాశులపై ఆధారపడి ఉంటే ఆ సమీకరణాన్ని పాక్షిక అవకలన సమీకరణం (partial differential equation) అంటారు.
ఐజక్ నూటన్ మూడు రకాల అవకలన సమీకరణాలని పేర్కొన్నాడు:
జేకబ్ బెర్నోలీ Jacob Bernoulli 1695 లో బెర్నోలీ సమీకరణాన్ని ప్రతిపాదించేడు. [1] ఈ సమీకరణం
సామాన్య అవకలన సమీకరణానికి ఒక ఉదాహరణ.
పాక్షిక అవకలన సమీకరణాలలో ఒకటి కంటె ఎక్కువ స్వతంత్ర చలరాశులు ఉంటాయి. ఉదాహరణక లప్లాస్ సమీకరణం ఈ దిగువ చూపిన విధంగా ఉంటుంది.
ఇవి కూడ చూడండి
బయటి లంకెలు
- Numerical Solutions of Partial Differential Equations
- Elliptic partial differential equations of second order Elliptic partial differential equations of second order
- V. Vemuri and W. J. Karplus, Digital Computer Treatment of Partial Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1985