త్రిభుజం

From tewiki
Jump to navigation Jump to search
త్రిభుజం
250px
కుటుంబం బహుభుజులు
రకం త్రిభుజం
భుజాలు AB,BC,CA లేదా c,a,b
శీర్షాలు A,B,C
కోణాలు ABC, BCA, BAC లేదా CAB
కోణాల మొత్తం (ABC + BCA + BAC) =180 డిగ్రీలు

Contents

నిర్వచనం

ఒకే సరళ రేఖ మీదలేని మూడు బిందువులను సరళరేఖా ఖండాలతో కలుపగా వచ్చే పటాన్ని త్రిభుజము లేదా త్రికోణము అంటారు. ఇది ఒక సంవృత పటము. ఆ బిందువులను శీర్షము లనీ, రేఖా ఖండాలను భుజములు లేదా బాహువులు అనీ అంటారు. భుజము కొలతను కూడా భుజము అనే అంటారు. ఒక శీర్షము రెండు భుజముల ఖండన బిందువు; ఇందులో, శీర్షమును స్థిరముగా ఉంచి, ఒక భుజము నుంచి రెండవ భుజమునకు వెళ్లే వ్యాప్తిని ఆ రెండు భుజముల మధ్య గల కోణము అంటారు. ఈ కోణమును డిగ్రీలలో కొలుస్తారు. ఒక త్రిభుజము ఒక సమతలము పైన ఉంటుంది. ఇంకోరకంగా చెప్పాలంటే, ఒక సమతలంలో మూడు భుజాలు (బాహువులు) గల సరళ సంవృత పటమును త్రిభుజం అంటారు. దీనిని త్రికోణం, త్రిభుజం లేదా త్రిభుజి (Triangle) అని కూడా అంటారు. దీనిని ముక్కోణం అని కూడా అనవచ్చును. A, B,, C శీర్షాలుగా గల త్రిభుజాన్ని పార్స్ చెయ్యలేకపోయాం (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): {\displaystyle \triangle ABC} గా సూచిస్తారు.

ధర్మాలు (లక్షణాలు)

త్రిభుజం యొక్క
(1) అంతరంలో గల బిందువులు: D,G,K
(2) బాహ్యంలో గల బిందువులు : H, E, L
(3) త్రిభుజం పై గల బిందువులు : I, J, F, A, B, C
  • ఇది మూడు భుజములను కలిగి ఉంటుంది.
  • ఈ భుజములను AB, BC,CA గా రెండు బిందువులతో లేదా శీర్షము C కి ఎదురుగా గల భుజాన్ని 'c' తోను, శీర్షము B కి ఎదురుగా గల భుజాన్ని 'b' తోను, అదేవిధంగా శీర్షము A కి ఎదురుగా గల భుజాన్ని 'a' తోను సూచిస్తారు.
  • ఇది మూడు శీర్షములు కలిగి ఉంటుంది. వీటిని ఆంగ్లంలో గల పెద్ద ఆక్షరాలు (capital letters) తో సూచిస్తారు.
  • ఇది మూడు కోణములు కలిగి ఉంటుంది.
  • ఇది సమతలాన్ని మూడు భాగాలుగా విభజిస్తుంది. అవి అంతరం,బాహ్యం, త్రిభుజం. సమతలములో త్రిభుజముతో పరిబద్ధమైన ప్రాంతమును అంతర భాగము అనీ, త్రిభుజము వెలుప గల ప్రాంతమును బాహ్య భాగము అనీ అంటారు. బాహ్య భాగము అపరిబద్ధమైన ప్రాంతము.
  • రెండు భుజముల మొత్తం మూడవ భుజం కన్నా ఎక్కువ ఉంటుంది.

త్రిభుజాలకు సంబంధించి ఈ లక్షణము ముఖ్యమైనది. దీనిని త్రికోణీయ అసమత అంటారు. దీని ప్రాముఖ్యత ఏమిటంటే, a, b, c అనే మూడు ధన సంఖ్యలు ఇస్తే, ఇవి భుజాల కొలతలుగా గల త్రిభుజాన్ని నిర్మించాలంటే, ఈ మూడు సంఖ్యలు త్రికోణీయ అసమతను పాటించాలి. అంటే, వీటిలో ఏ రెండింటి మొత్తమైనా మూడవ దానికన్న ఎక్కువ అయి ఉండాలి. అంటే, a < b + c, b < c + a, c < a + b జరగాలి. ఇది జరిగితే, a, b, c కొలతలుగా గల త్రిభుజాన్ని నిర్మించగలము. విపర్యయంగా, ఈ త్రికోణీయ అసమతను పాటించని ధన సంఖ్యలు a, b, c లు భుజముల కొలతలుగా గల త్రిభుజాన్ని నిర్మించలేము. ఉదాహరణకు, a = 1, b = 2, c = 3 అయితే, 1, 2, 3 లు త్రికోణీయ అసమతను (3 = 2 + 1) పాటించడము లేదు. కనుక, 1, 2, 3 కొలతలుగా గల త్రిభుజాన్ని నిర్మించలేము. ఇలాంటి మరియొక త్రికము (3, 6, 9).

  • రెండు భుజముల భేదం మూడవ భుజం కన్నా తక్కువ ఉంటుంది.

ఈ ధర్మమును త్రికోణీయ అసమత నుంచి రాబట్టవచ్చు.

  • ఒక త్రిభుజం లోని మూడు కోణాల మొత్తం 180 డిగ్రీలు లేదా "పై" రేడియనులు
  • త్రిభుజములో ఆరు అంశలు ఉంటాయి. అవి : మూడు భుజములు, మూడు కోణములు. ఒక త్రిభుజాన్ని నిర్మించడానికి ఈ ఆరు అంశలు తెలియవలసిన అవసరం లేదు. వీటిలో సాధారణంగా మూడు అంశలు తెలిస్తే చాలు; వీటి సాయంతో త్రిభుజాన్ని నిర్మించి, మిగిలిన మూడు అంశలను కనుక్కొనవచ్చును. త్రిభుజ నిర్మాణానికి, దిగువ తెలిపిన మూడు అంశలు తెలిస్తే చాలు. అవి
    • మూడు భుజాలు
    • రెండు భుజాలు, వాటి మధ్య కోణం
    • ఒక భుజం, దానిని ఆనుకొని ఉన్న (ఆసన్న) కోణాలు రెండు.

కాని, మూడు కోణములు తెలిస్తే, ఆమూడూ కోణాలుగా కలిగిన త్రిభుజాలు చాలా ఉంటాయి; వాటి భుజాల కొలతలు తేడాగాఉంటాయి. ఇలాంటి త్రిభుజాలను సరూప త్రిభుజములు అంటారు.

త్రిభుజాలలో రకాలు

భుజాల కొలతలు ఆధారంగా

భుజాల కొలతలు ఆధారంగా త్రిభుజములు మూడు రకములు

  1. సమబాహు త్రిభుజం
  2. సమద్విబాహు త్రిభుజం
  3. విషమబాహు త్రిభుజం
సమబాహు త్రిభుజం సమద్విబాహు త్రిభుజం విషమబాహు త్రిభుజం
సమత్రికోణంద్విసమత్రికోణంవిషమబాహు
  • మూడు భుజాలూ సమానమైతే దానిని 'సమబాహు త్రిభుజం' లేదా సమత్రికోణ త్రిభుజం అంటారు. ఇందులో ప్రతి కోణం 60 డిగ్రీలు ఉంటుంది.
  • ఏవైనా రెండు భుజాలు సమానమైతే దానిని సమద్విబాహు త్రిభుజం అంటారు. అందులో రెండు కోణాలు (లేదా రెండు భుజాలు) కూడా సమానంగా ఉంటాయి. సమాన భుజాలకు ఎదురుగా ఉండే కోణాలు సమానంగా ఉంటాయి. సమాన ఆసన్న కోణాలు కలిగియున్న భుజమును "భూమి" అంటారు. ఇందులో భూకోణాలు సమానం.
  • మూడు విభిన్న భుజాలు కలిగిన త్రిభుజాన్ని విషమ బాహు త్రిభుజం అంటారు. దీనిలో అన్ని కోణాలు కూడా విభిన్నంగా ఉంటాయి.

కోణాల కొలతలు ఆధారంగా

త్రిభుజము లోని ఒక కోణము 90 డిగ్రీల కన్న తక్కువ ఉంటే, ఆకోణాన్ని లఘు కోణము అంటారు; ఆ కోణము 90 డిగ్రీ లకన్న ఎక్కువ ఉంటే, దానిని గురు కోణము అంటారు; ఆ కోణము సరిగా 90 డిగ్రీలు ఉంటే, దానిని సమకోణము లేదా లంబకోణము అంటారు. కోణముల కొలతలు ఆధారంగా త్రిభుజాలు మూడురకములు :

  1. అల్ప కోణ త్రిభుజం (లఘుకోణ త్రిభుజం)
  2. లంబ కోణ త్రిభుజం (సమకోణ త్రిభుజం), లేదా (లంబ త్రికోణము)
  3. అధిక కోణ త్రిభుజం (గురుకోణ త్రిభుజం)
లంబ త్రికోణం గురు కోణ త్రిభుజం లఘు కోణ త్రిభుజం
లంబత్రికోణంగురు కోణ త్రిభుజంలఘు కోణ త్రిభుజం
  • ప్రతి కోణమూ 90 డిగ్రీలకన్న తక్కువైతే, ఆ త్రిభుజాన్ని లఘు కోణ త్రిభుజం అంటారు.
  • ఒక కోణం గనుక సరిగా 90 డిగ్రీలు ఉన్నట్లయితే, దానిని 'లంబ త్రికోణం' (లేదా) 'లంబ కోణ త్రిభుజం' అంటారు. ప్రసిద్ధి చెందిన పైథాగరస్ సిద్ధాంతం]] ఈ విధమైన త్రికోణానికి వర్తిస్తుంది. లంబకోణానికి ఎదురుగా ఉన్న భుజమును కర్ణము అంటారు. ఈ త్రిభుజంలో కర్ణము మీది వర్గం మిగిలిన రెండు భుజాల వర్గముల మొత్తమునకు సమానము.
  • ఏ కోణమైనా 90 డిగ్రీలకన్న ఎక్కువ ఉంటే, ఆ త్రిభుజాన్ని గురు కోణ త్రిభుజం అంటారు. ఈ త్రిభుజంలో పెద్దకోణం ఎదురుగా గల భుజం పెద్ద భుజం అవుతుంది.

త్రిభుజాల సర్వసమత

త్రిభుజమునకు సంబంధించి ఆరు కొలతలు ఉంటాయి. అవి : భుజముల కొలతలు మూడు, కోణముల కొలతలు మూడు. ఒక త్రిభుజము లోని మూడు భుజముల కొలతలు, మూడుకోణముల కొలతలు వరుసగా మరియొక త్రిభుజము లోని మూడు భుజములు, మూడు కోణముల కొలతలకు సమానమైనచో ఆ రెండు త్రిభుజములను సర్వసమములు అంటారు. రెండు త్రిభుజములు సర్వసమములు అగుటకు నియమలు:

భు.భు.భు నియమం భు.కో.భు నియమం కో.భు.కో. నియమం లం.క.భు నియమం
భు.భు.భు నియమంభు.కో.భు నియమంకో.భు.కో. నియమంలం.క.భు నియమం

భు.భు.భు నియమం

ఒక త్రిభుజంలోని మూడు భుజాల కొలతలు, రెండవ త్రిభుజంలోని మూడు భుజాల కొలత లకు సమానంగా ఉంటే ఆ రెండు త్రిభుజాలు సర్వసమములు.

భు.కో.భు నియమం

ఒక త్రిభుజము లోని రెండు భుజాలు, వాటి మధ్య కోణం, రెండవ త్రిభుజము లోని రెండు భుజాలు, వాటి మధ్య కోణం నకు సమానంగా ఉన్నచో అవి సర్వసమములు.

కో.భు.కో.నియమం

ఒక త్రిభుజములోని ఒక భుజం, దాని రెండు ఆసన్న కోణాలు, రెండవ త్రిభుజములోని ఒక భుజం దాని రెండు అసన్న కోణాలకు సమానమైతే అవి సర్వసమములు.

లం.క.భు నియమం

ఒక లంబకోణ త్రిభుజములో కర్ణము, భుజము, వేరొక లంబకోణ త్రిభుజములో కర్ణము, భుజము లకు సమానమైన అవి సర్వ సమములు.

సర్వ సమాన, సరూప త్రిభుజముల తేడాలు

  • రెండు త్రిభుజములు సర్వ సమములు అయితే అవి సరూపములు. కాని రెండు సరూప త్రిభుజములు సర్వ సమములు కానక్కరలేదు.

ఉదాహరణకు, ఏ రెండు సమబాహు త్రిభుజములు అయినా సరూపములు (రెండు త్రిభుజముల లోని ప్రతి కోణము 60 డిగ్రీలు కనక). కాని రెండు సమ బాహు త్రిభుజములు సర్వ సమములు కానక్కర లేదు. 2 భుజము కొలతగా కలిగిన సమ బాహు త్రిభుజము, 3 భుజము కొలతగా కలిగిన సమ బాహు త్రిభుజములు రెండూ సరూపములేకాని సర్వ సమములు కావు.

  • రెండు సరూప త్రిభుజముల భుజములు ఒకే నిష్పత్తిలో ఉంటాయి.

Δ ABC, Δ DEF లు సరూపములు, కోణము A = కోణము D, కోణము B = కోణము E, కోణము C = కోణము F అయితే a : d = b : e = c : f దీనినే a : b : c = d : e : f అని కూడా వ్రాస్తాము.

  • పై ఫలితము యొక్క విపర్యయము కూడా నిజమే. అంటే, Δ ABC, Δ DEF లలో a : b : c = d : e : f అయితే ఆ త్రిభుజములు రెండూ సరూపములు.

ఉదాహరణకు, Δ ABC లో a = 2, b = 3, c = 4, Δ DEF లో d = 6, e = 9, f = 12 అయితే a : b : c = d : e : f కనుక Δ ABC, Δ DEF లు సరూపములు.

చుట్టుకొలత

త్రిభుజ భుజాల మొత్తాన్ని త్రిభుజము యొక్క చుట్టుకొలత ఆంటారు. AB, BC, CA లు త్రిభుజ భుజాలైన AB+BC+CA అనునది త్రిభుజము చుట్టుకొలత అవుతుంది.

త్రిభుజ వైశాల్యం

ఒక త్రిభుజం ఆక్రమించే స్థలం (అంతరభాగము) వైశాల్యాన్ని ఆ త్రిభుజ వైశాల్యము అంటారు.

భూమి ఎత్తు ఇచ్చినపుడు త్రిభుజ వైశాల్యం

త్రిభుజ వైశాల్యం దాని భూమి, ఎత్తులతో సమానమైన సమాంతర చతుర్భుజం వైశాల్యంలో సగం

ఒక త్రిభుజం యొక్క క్రింది భుజమును "భూమి" (base) అంటారు. భూమి యొక్క ఎదుటి శీర్షము నుండి భూమికి గీయబడిన లంబ రేఖా ఖండము యొక్క పొడవును ఆ త్రిభుజము యొక్క "ఎత్తు" అంటాము. భూమి, ఎత్తు, ల లబ్ధములో సగము ఆ త్రిభుజ వైశాల్యం అవుతుంది.
త్రిభుజము భూమి "b", ఎత్తు "h" అయినపుడు
త్రిభుజ వైశాల్యము = పార్స్ చెయ్యలేకపోయాం (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): {\displaystyle T=\frac{1}{2}bh} .

మూడు భుజాలు ఇచ్చినపుడు త్రిభుజ వైశాల్యం

త్రిభుజ భుజాలు a,b,c అయినపుడు, వాటి సరాసరి (a+b+c)/2 అవుతుంది. ఈ సరాసరిని "s"గా తీసుకుంటే, త్రిభుజ వైశాల్యం s, (s-a), (s-b), (s-c) ల లబ్ధము యొక్క వర్గమూలానికి సమానమవుతుంది.

పార్స్ చెయ్యలేకపోయాం (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): {\displaystyle T = \sqrt{s(s-a)(s-b)(s-c)}}

మధ్యగత రేఖలు, కేంద్రభాసము

త్రిభుజములో ఒక భుజము యొక్క మధ్య బిందువు నుండి ఎదుటి శీర్షానికి గీచిన రేఖాఖండాన్ని మధ్యగత రేఖ అందురు. త్రిభుజము లో మధ్యగత రేఖలు అనుషక్తములు (అనగా, ఒక బిందువు వద్ద ఖండించు కుంటాయి). ఆఖండన బిందువును కేంద్రభాసము అందురు. దీనిని "G"తో సూచిస్తారు. కేంద్రభాసము, మధ్యగత రేఖను 1:2 నిష్పత్తిలో విభజిస్తుంది.

  • త్రిభుజంలో D,E,F లు వరుసగా BC,CA,AB భుజాల మధ్య బిందువులు.
  • పటంలో AD,BE,CF లు త్రిభుజ మధ్యగతరేఖలు.
  • వాటి ఖండన బిందువు కేంద్రభాసము (G) అవుతుంది.
  • AG:GD = 2:1
  • BG:GE = 2:1
  • CG:GF = 2:1

లంబ రేఖలు, లంబ కేంద్రము

  • త్రిభుజంలో ప్రతి శీర్షం నుండి ఎదుటి భుజమునకు గీయబడిన లంబమును "లంబరేఖ" లేక ఉన్నతి అంటారు.
  • త్రిభుజ ఉన్నతులు అనుషక్తములు. ఈ అనుషక్త బిందువును లంబ కేంద్రము అంటారు. దీనిని "H"తో సూచిస్తారు.
  • BC భుజమునకు ఉన్నతి AD
  • AB భుజమునకు ఉన్నతి CF
  • AC భుజమునకు ఉన్నతి BE
  • త్రిభుజ ఉన్నతుల ఖండన (అనుషక్త) బిందువు "H" దాని లంబ కేంద్రం అవుతుంది.

పరివృత్త కేంద్రం

ఒక త్రిభుజము యొక్క మూడు శీర్షముల గుండా పోవు వృత్తాన్ని పరివృత్తం అంటారు. త్రిభుజము యొక్క మూడు భుజాల లంబ సమద్విఖండన రేఖలు అనుషక్తములు. ఆ అనుషక్త బిందువు పరివృత్త కేంద్రం అవుతుంది. దీనిని "S"తో సూచిస్తారు. పరివృత్త కేంద్రం నుండి త్రిభుజ శీర్షాలు సమాన దూరంలో ఉంటాయి.

  • లఘు కోణ త్రిభుజంలో పరివృత్త కేంద్రం త్రిభుజము యొక్క అంతరం లో ఉంటుంది.
  • లంబ కోణ త్రిభుజంలో పరివృత్త కేంద్రం దాని కర్ణం మధ్య బిందువు వద్ద ఉండును.
  • గురు కోణ త్రిభుజంలో పరివృత్త కేంద్రం వృత్తం వెలుపల ఉంటుంది.

అంతర వృత్త కేంద్రం

త్రిభుజ భుజాల నుండి సమాన దూరంలో గల బిందువును త్రిభుజ అంతర కేంద్రం అందురు. త్రిభుజ కోణ సమద్విఖండన రేఖలు అనుషక్తములు. ఆ అనుషక్త బిందువు దాని అంతర వృత్త కేంద్రం అవుతుంది. దీనినుండి త్రిభుజ భుజాలు సమాన దూరంలో ఉంటాయి. దీనిని "I"తో సూచిస్తారు. ఇది ఎల్లప్పుడూ త్రిభుజము అంతరం లోనే ఉంటుంది.

దస్త్రం:TRIANGLE-MEDIANS-CENTROID.png
మధ్యగత రేఖల అనుషక్త బిందువు, కేంద్రభాసము.
దస్త్రం:Triangle-altitudes.png
త్రిభుజ ఉన్నతుల అనుషక్త బిందువు లంబ కేంద్రం.
పరివృత్త కేంద్రం
కోణ సమద్విఖండన రేఖల అనుషక్త బిందువు, అంతర కేంద్రం అవుతుంది.
మధ్యగత రేఖల అనుషక్త బిందువు, కేంద్రభాసముత్రిభుజ ఉన్నతుల అనుషక్త బిందువు, లంబ కేంద్రంపరివృత్త కేంద్రంఅంతర కేంద్రం

బాహ్య కేంద్రాలు

ఒక త్రిభుజం (నలుపు రంగు) నకు అంతర వృత్తం (నీలి రంగు), బాహ్య వృత్తాలు (నారింజ రంగు) వాటి కేంద్రాలు (JA,JB,JC),అంతర కోణ సమద్విఖండన రేఖలు (ఎరుపు రంగు), బాహ్యకోణ సమద్విఖండన రేఖలు (ఆకుపచ్చ రంగు)
  • జ్యామితిలో బాహ్యవృత్తము అనునది త్రిభుములో ఒక భుజము, మిగిలిన రెండు భుజాలు పొడిగించగా ఏర్పడిన రేఖ లను స్పృశిస్తూ పోయే వృత్తము. ఇలాంటి వృత్తాలు త్రిభుజానికి మూడు ఉంటాయి.
  • త్రిభుజంలో ఒక అంతర కోణం యొక్క కోణ సమద్విఖండన రేఖ, బాహ్య కోణాల సమద్విఖండన రేఖల (అనుషక్త బిందువు) ఖండన బిందువు బాహ్య వృత్త కేంద్రం అవుతుంది.
  • ఇవి పటంలో చూపబడినట్లు (JA,JB,JC) లు
  • ప్రతి బాహ్య వృత్తానికి ఒక భుజం స్పర్శరేఖ., మిగిలిన రెండు భుజాలను పొడిగించగా వచ్చే రేఖలు కూడా స్పర్శరేఖలే. కాని ఆ భుజాలు బాహ్య వృత్తాన్ని, త్రిభుజము వెలుపల స్పృశిస్తాయి.

నవ బిందు వృత్తం

తొమ్మిది బిందువులు

ఒక త్రిభుజంలో గల ఈ దిగువనీయబడిన తొమ్మిది బిందువుల గుండా పోయే లా ఒక వృత్తమును గీయవచ్చును. ఆ వృత్తమును నవ బిందు వృత్తము అంటారు.

  1. త్రిభుజంలో గల భుజము ల మధ్య బిందువులు (3)
  2. త్రిభుజం యొక్క శీర్షం నుండి ఎదుటి భుజానికి గీయబడిన లంబము, త్రిభుజం యొక్క భుజంపై కలిసే బిందువు (లంబ పాదములు) (3)
  3. త్రిభుజము యొక్క ప్రతి శీర్షం నుండి లంబ కేంద్రము నకు గీచిన రేఖాఖండముల మధ్య బిందువులు (3)

పై 9 బిందువుల గుండా పోవు వృత్తమును "నవ బిందు వృత్తము" (nine-point circle) అంటారు.

తొమ్మిది బిందువుల గుర్తింపు

Nine-point circle.svg

పై పటంలో వృత్తము తొమ్మిది జ్యామితీయ బిందువులైన పార్స్ చెయ్యలేకపోయాం (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): {\displaystyle {D,E,F,G,H,I,J,K,L}} గుండా పోయింది. ఈ బిందువులలో D, E,, Fలు త్రిభుజ భుజాల మధ్య బిందువులు. G, H,, I బిందువులు త్రిభుజ భుజాలపై గల లంబ పాదములు. J, K,, L బిందువులు త్రిభుజ శీర్షములైన "A", "B", "C" ల నుండి లంబకేంద్రం (S) కు గల రేఖాఖండముల యొక్క మధ్య బిందువులు.

లఘు కోణ త్రిభుజం లో భుజాల మధ్య బిందువులు, లంబకేంద్రాలు త్రిభుజం పైన ఉంటాయి. గురు కోణ త్రిభుజం లో రెండు భుజాల లంబకేంద్రాలు త్రిభుజం బయట ఉంటాయి. అయినా నవ బిందు వృత్తం ఈ తొమ్మిది బిందువుల గుండా పోతుంది.

ఆయిలర్ రేఖ

పటంలో ఆయిలర్ రేఖ (ఎరుపు రంగు రేఖ)
కేంద్రభాసము (మధ్యగత రేఖల (నారింజ) అనుషక్త బిందువు)
లంబ కేంద్రం (ఉన్నతుల (నీలం) అనుషక్త బిందువు)
పరివృత్త కేంద్రం (లంబసమద్విఖండన రేఖల (ఆకుపచ్చ) అనుషక్త బిందువు)
నవ బిందు వృత్తం యొక్క కేంద్రం (ఎరుపు రంగు రేఖపై)
అనే నాలుగు బిందువుల గుండా పోయే రేఖ

జ్యామితిలో ఆయిలర్ రేఖ అనునది త్రిభుజంలో ఈ క్రింది నాలుగు బిందువుల గుండా పోవు రేఖ.

  1. కేంద్రభాసము ( త్రిభుజ మధ్యగత రేఖల అనుషక్త బిందువు)
  2. లంబ కేంద్రము (త్రిభుజ ఉన్నతుల అనుషక్త బిందువు)
  3. పరివృత్త కేంద్రము (త్రిభుజ భుజాల లంబ సమద్విఖండన రేఖల అనుషక్త బిందువు
  4. నవ బిందు వృత్త కేంద్రం (త్రిభుజ నవ బిందు వృత్తం యొక్క కేంద్రం)
  • పై నాలుగు బిందువులు సరేఖీయాలని 1765 లో లియొనార్డో ఆయిలర్ అనే ప్రఖ్యాత గణిత శాస్త్రవేత్త కనుగొన్నాడు. ఆయన పేరు మీద ఆ బిందువుల గుండా పోవు రేఖను ఆయిలర్ రేఖ అంటారు.
  • సమబాహు త్రిభుజంలో పై నాలుగు బిందువులు ఏకీభవిస్తాయి.
  • ఇతర త్రిభుజాలలో నాలుగు బిందువులూ ఏకీభవించవు. అందువలన ఆయిలర్ రేఖ వ్యవస్థీకృతమవుతుంది.
  • నవ బిందు వృత్త కేంద్రం ఎల్లపుడూ లంబ కేంద్రము, పరివృత్త కేంద్రము ల మధ్య మాత్రమే ఉంటుంది.
  • కేంద్రభాసము, పరివృత్త కేంద్రం మధ్య దూరం ఎల్లపుడూ కేంద్రభాసము, లంబకేంద్రముల మధ్య దూరములో సగం ఉంటుంది.

ఉపయుక్త గ్రంథం

పైన చెప్పిన త్రిభుజాల ఫలితాల వివరాలకు, నిరూపణలకు ఉపయుక్తమైన పుస్తకం: ఆచార్య N.Ch. పట్టాభిరామాచార్యులు వ్రాసిన " A treatise on Pure Geometry ", ప్రచురణ : Mathematical Scientist Club, # 1-1-658, near NIT, Warangal-506004.

త్రిభుజీయ సంఖ్యలు

మొదటి ఆరు త్రిభుజీయ సంఖ్యలు

త్రిభుజీయ సంఖ్య అనగా ఒక సమబాహు త్రిభుజం యేర్పరచుటకు కావలసిన వస్తువుల సంఖ్య. వివాదానికి ఆస్కారం లేకుండా, ముందుగా "1" అను సంఖ్యను త్రిభుజీయ సంఖ్య అని నిర్వచిస్తాము. దీనిని T1తో సూచిస్తాము. రెండు వస్తువులు భుజంగా గల త్రిభుజం యేర్పరచాలంటే మూడు వస్తువులు కావాలి. అందువలన "3" త్రిభుజీయ సంఖ్య. దీనిని T2తో సూచిస్తాము. మూడు వస్తువులు భుజంగా గల సమబాహు త్రిభుజం యేర్పరచాలంటే ఆరు వస్తువులు కావాలి. అందువలన "6" త్రిభుజీయ సంఖ్య అవుతుంది. దీనిని T3తో సూచిస్తాము. అదేవిధంగా "n" వస్తువులు గల సమబాహు త్రిభుజం కావాలంటే "n", దాని తర్వాత సంఖ్య "n+1" ల లబ్ధంలో సగ భాగము త్రిభుజీయ సంఖ్య అవుతుంది. దీనిని Tnతో సూచిస్తాము. అంటే, Tn = n (n+1)/2. పటంలో మొదటి 6 త్రిభుజీయ సంఖ్యలను చూపడం జరిగింది.
n ధన పూర్ణాంకమైతే, Tn+1 = Tn + (n+1) అని గమనించవచ్చును.
కొన్ని త్రిభుజీయ సంఖ్యలు దిగువనీయబడినవి:

పార్స్ చెయ్యలేకపోయాం (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "/mathoid/local/v1/":): {\displaystyle {1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120 ........................}}

ఉపయోగాలు

నిత్య జీవితంలో వాడకం

  • ఎర్ర త్రికోణం భారతదేశంలో కుటుంబ నియంత్రణకు గుర్తుగా వాడతారు.
  • పచ్చ త్రికోణం పర్యావరణ పరిరక్షణకు గుర్తుగా వాడుతారు.
  • ట్రాఫిక్ గుర్తులలో త్రికోణం విరివిగా వాడబడుతుంది. అది సులభంగా కంటికి ఆనుతుంది గనుక.
  • త్రికోణం అనేక సందర్భాలలోనూ, సంప్రదాయాలలోనూ వేర్వేరు అర్ధాలకు సంకేతంగా వాడబడింది.

బయటి లింకులు

ఇవి కూడా చూడండి


రేఖా గణితం - బహుభుజిలు
త్రిభుజంచతుర్భుజిపంచభుజిషడ్భుజిసప్తభుజిఅష్టభుజినవభుజిదశభుజిఏకాదశభుజిDodecagonTriskaidecagonPentadecagonHexadecagonHeptadecagonEnneadecagonIcosagonChiliagonMyriagon