రేఖాగణితం

From tewiki
Jump to navigation Jump to search

రేఖాగణితం (ఫ్రెంచ్, జర్మన్:Geometrie, ఆంగ్లం:Geometry) (గ్రీకు γεωμετρία geo=భూమి metria=కొలత ) గణిత శాస్త్రములో ఒక విభాగము. ఇది ఒక వస్తువు యొక్క స్థితి గురించి, ఆకారము గురించి, పరిమాణం గురించిన ప్రశ్నలకు సంబంధించినది . ఇది ఒక పురాతనమైన శాస్త్రవిభాగం. ముందుగా పొడవు, వెడల్పు, వైశాల్యం, ఘనపరిమాణం మొదలగు వాటిని కనుగొనడం లాంటి ప్రయోగ పూర్వక జ్ఞానాన్ని గురించి వివరించిన ఈ శాస్త్రం, యూక్లిడ్ రాకతో సైద్ధాంతిక రూపాన్ని సంతరించుకుంది. ఆయన రూపొందించిన యూక్లిడియన్ జ్యామితి కొన్ని శతాబ్దాల నుంచీ ప్రమాణంగా నిలిచింది. ఖగోళ శాస్త్రానికి సంబంధించిన సమస్యలైన విశ్వాంతరాళంలో గ్రహాల, నక్షత్రాల స్థానాలు మొదలైనవి అనేక జ్యామితీయ సమస్యలకు ఆధారభూతంగా నిలిచాయి.

నిరూపక రేఖా గణితం

వైశ్లేషిక రేఖాగణితం లేదా నిరూపక రేఖాగణితంని ఫ్రెంచ్ గణిత శాస్త్రవేత్త అయిన రెనెడెకార్టె (1596-1650) కనుక్కున్నాడు. ప్రత్యేక క్రమంలో అమర్చిన మూలకాల జత (a, b) ను ఒక క్రమయుగ్మం అంటారు. క్రమయుగ్మం (a, b) లో a ని ప్రథమ నిరూపకమనీ, b ని ద్వితీయ నిరూపకం అంటారు. ఒక తలంలోని ప్రతి బిందువును ఒక క్రమయుగ్మంతోనూ, విపర్యయంగా ఒక క్రమయుగ్మాన్ని ఒక బిందువుతోనూ సూచిస్తారు. ఒక తలాన్ని రెండు లంబరేఖలతో నాలుగు పాదాలుగా విభజించి అందులో బిందువులను వాస్తవ సంఖ్యా క్రమ యుగ్మాలతో సూచిస్తారు.