"తెలుగులో సులువుగా టైపు చేసేందుకు, మీ క్రోమ్ బ్రౌజరు లో గూగుల్ లిప్యంతరీకరణ పద్ధతిని వాడవచ్చు."

కనిష్ఠ సామాన్య గుణిజం

From tewiki
Revision as of 08:51, 21 March 2020 by imported>Yarra RamaraoAWB (clean up, replaced: మరియు → , (3), typos fixed: , → , (3))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

కనిష్ఠ సామాన్య గుణిజం అన్నది ఇంగ్లీషులోని Least Common Multiple కి ముక్కస్య ముక్క అనువాదం. దీనిని ఇంగ్లీషులో సంక్షిప్తంగా LCM అనిన్నీ తెలుగులో కసాగు అనిన్నీ అంటారు.

రెండు పూర్ణ సంఖ్యలు క, చ ఉన్నాయనుకుందాం. ఇప్పుడు క, చ ల చేత నిశ్శేషంగా భాగించబడే కనిష్ఠ సంఖ్య ఏదో అదే ఈ రెండింటి కసాగు.
ఉదాహరణకి, కసాగు (2, 3) = 6. ఎందుకంటే 2 చేత, 3 చేత నిశ్శేషంగా భాగించడానికి వీలయే సంఖ్యలన్నిటిలోను 6 అతి చిన్నది.

రెండు కంటె ఎక్కువ పూర్ణ సంఖ్యలకి కూడ కసాగు లెక్కకట్టవచ్చు.
ఉదాహరణకి కసాగు (క, చ, ట, త) = కసాగు (కసాగు (కసాగు (క, చ), ట), త)

సూచించే విధానం

ఈ వ్యాసంలో కొన్ని సార్లు a, b అనే పూర్ణాంకాల క.సా.గును lcm (a, b) గా సూచిస్తారు. పాత పుస్తకములలో దీనిని [a, b].[1]>[2] గానూ, జె.ప్రోగ్రామింగ్ లాంగ్వేజ్ లో దీనిని a*.b గాను సూచిస్తారు.

గుణిజాల పద్ధతిలో క.సాగు కనుగొనుట

ఇచ్చిన సంఖ్యల యొక్క గుణిజాలను (factors) విడివిడిగా వ్రాసి, ఆ గుంపులలో ఉమ్మడిగా ఉన్న గుణిజాలను తీసుకొని, వాటిలో కనిష్ఠంగా ఉన్న సంఖ్యని ఆ సంఖ్యల క.సా.గు అంటారు.

ఉదాహరణ

4, 6 ల క.సా.గు ఎంత?

4 యొక్క గుణిజాలు:

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, ...

6 యొక్క గుణిజాలు:

6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, ...

4, 6 ల ఉమ్మడి గుణిజాలు:

12, 24, 36, 48, 60, 72, ....

పైన గల ఉమ్మడి గుణిజాలలో కనిష్ఠమైనది 12 కావున ఆ సంఖ్యల క.సా.గు 12 అవుతుంది.

ప్రధాన విభాజకాలు ఉపయోగించి కసాగు లెక్కకట్టడం

సంఖ్యల ప్రధాన కారణాంకాలను (prime factors) కనుగొని ఆ గుంపుల నుండి ఎక్కువ ఘాతాంకాలు ఉన్న ప్రధాన కారణాంకాలను తీసుకొంటే వాటి లబ్ధమే క.సా.గు అవుతుంది.

12, 30 ల కసాగు కనుగొనుట.

12 యొక్క ప్రధాన విభాజకాలు: 12 = 2 X 2 X 3 =22 X 31 X 50


30 యొక్క ప్రధాన విభాజకాలు: 30 = 2 X 3 X 5 =21 X 31 X 51


ఈ రెండు గుంపుల నుండి ఎక్కువ ఘాతాంకాలు ఉన్న ప్రధాన కారణాంకాలని తీసుకుంటే 22 X 31 X 51 = 60

కనుక క.సా.గు 60 అవుతుంది.
24,300 ల క.సా.గు కనుగొనుట.

24 యొక్క ప్రధాన విభాజకాలు: 24 = 2 X 2 X 2 X 3 =23 X 31 X 50


300 యొక్క ప్రధాన విభాజకాలు: 300 = 2 X 2 X 3 X 5 X 5 =22 X 31 X 52


ఈ రెండు గుంపుల నుండి ఎక్కువ ఘాతాంకాలు ఉన్న ప్రధాన కారణాంకాలని తీసుకుంటే 23 X 31 X 52 = 600

కనుక క.సా.గు 600 అవుతుంది.

గ.సా.భా ఉపయోగించి క.సా.గు లెక్కకట్టడం

ఉదాహరణ

మూలాలు

  1. Long (1972, p. 39)
  2. Pettofrezzo & Byrkit (1970, p. 56)

ఇతర లింకులు